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The average Riemann curvature of conservative systems in 
classical mechanics 

J F C van Velsent 
Instituut voor Theoretische Fysica, Rijksuniversiteit Utrecht, Princetonplein 5 ,  Utrecht, 
The Netherlands 

Received 17 November 1980 

Abstract. The average value R of the Riemann scalar R over the configuration space is 
defined for conservative systems in classical mechanics. Positive R is associated with 
integrability, negative R with ergodicity, mixing etc. The average is calculated for a number 
of model systems. Oscillator systems and 8-particle Lennard-Jones systems are charac- 
terised by R >O.  For low densities this also applies to 8- and 27-particle Debye-Hiickel 
systems. For high densities and small energies the calculations suggest that R < O  every- 
where on the accessible part of configuration space. In a larger part of the density, energy 
plane R < 0. 

1. Introduction 

An interesting question in the classical mechanics of many-body systems is whether 
there exists a computable quantity which shows by its sign (or size) that the system is 
integrable, ergodic, mixing, or that it has some other well defined ergodic property. 
Proving the integrability or ergodicity of a system would thereby be reduced to 
computing that quantity, or to showing that it has the required sign (or size). Since 
ergodic properties are intrinsic properties of the system, the quantity should not depend 
on the particular way in which the coordinates have been chosen. In other words, it 
should be an invariant with respect to coordinate transformations. 

One such quantity is the Kolmogorov entropy (Amol’d and Avez 1968). Ergodic 
properties are associated with positive entropy. For example, K-systems have positive 
entropy. About the implications of positive entropy not much useful seems to be 
known. But positive entropy is not necessary for mixing of all orders: there are systems 
with zero entropy which have that property (Newton and Parry 1966). 

Pesin (1977) gives a formula which relates the Kolmogorov entropy with the 
Liapunov characteristic numbers. Computation of these numbers thereby provides a 
practical method for the computation of the entropy. This method has been applied by 
Benettin et a1 (1979). A disadvantage of the method is that it is not local: in order to 
compute the Liapunov characteristic numbers one has to integrate the equations of 
motion. One would prefer to avoid this in systems where exponential growth of errors 
or perturbations is to be expected. 

i Present address: Gandhi 75, 4102 H G  Culemborg, The Netherlands. 
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A property even less tangible than positive entropy is 'completely positive entropy' 
(Rokhlin 1967). If a system has this property, then it is ergodic (Rokhlin 1967). The 
power of this theorem is offset by the lack of a practical way of verifying completely 
positive entropy. 

2. The Riemann invariant R 

A local quantity which might be useful for the purpose stated above is the Riemann 
tensor (van Velsen 1980, to be referred to as I). With respect to ergodic properties it 
can be used to define a hierarchy of 'chaos'. The most chaotic situation is represented 
by negative curvature. Negative curvature means that all sectional curvatures are 
negative everywhere. At each point of an N-dimensional manifold the number of 
independent sectional curvatures or conditions is of the order N 2 .  

If a system has negative curvature, neighbouring trajectories diverge uniformly. 
Two neighbouring trajectories do not intersect more than once (Milnor 1969, lemma 
19.1). A theorem of Anosov (1967) states that a system with negative curvature is a 
K-system. 

A weaker condition is that for each direction neighbouring trajectories diverge only 
on the average. This can be written as a condition on the Ricci tensor. At each point of 
configuration space one has of the order of N conditions. If on the other hand the 
eigenvalues of the Ricci tensor are (strictly) positive, then every sufficiently long part of 
a trajectory is intersected at least twice by a neighbouring trajectory (Myers 1941). 

Averaging the eigenvalues of the Ricci tensor yields the Riemann scalar R. The next 
level in the hierarchy is therefore defined by the condition R < 0. 

It remains to  average over the configuration manifold. In order to give a precise 
definition of this average it is necessary first to define a few fundamental quantities. Let 
E be the energy and V ( q )  the potential of the configuration q = q ', . . . , 4". Then the 
configuration manifold M is defined by the condition that the kinetic energy is positive: 
E - V ( q )  > 0. The metric tensor gij has determinant g, and the invariant volume 
element has the form J idq '  . . . dq". It follows that the invariant average R of the 
Riemann scalar over the configuration manifold is given by 

R = ( l M R J i d q ' .  . . dqN)( lMJidq ' . .  , dqN)-' .  

It is obvious that R has something to do with the integrability or ergodicity of the 
system. But except for the two-dimensional case little is known about the implications 
of the condition R < O  for the topology of the trajectories, and similarly the relation 
between R and the Kolmogorov entropy is pobrly understood. For a two-dimensional 
closed manifold Kramli (1973) (cited by Pesin 1977) has shown that the flow is ergodic if 
R ( 0 .  

According to I it may be assumed that gij = ( E - V ) 6 ,  and, consequently, g =  
(E - V)". In the same paper it is shown that 

R = (N - l ){(E - V )  Tr vij -i(N - 6) Tr vivj}/(E - V ) 3  ( 2 )  

where vi and vij are the first and second derivatives of the potential V ( q ) .  These two 
quantities do not depend on E .  Therefore, if R < 0 for some energy Eo, then R < 0 for 
all V <E <Eo. Note that (2) explicitly shows that R is a local quantity. 
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For E + a3 the effect of the potential on the motion of the system vanishes, the 
trajectories are straightened out and the curvatures tend to zero. In particular also 
R + O .  

Substituting the expression (2) for R into (1) one obtains 

( E - V ) k N - 3 { ( E - V ( q ) ) T r v i i - ~ ( N - 6 ) T r v i v i  

-1 [I, (E-V(q))i"dq' ...*"I . (3) 

The average is seen to exist for N 2 6. If V(q)  is bounded from above + 0 as E +a. 
With decreasing E the domain E - V > 0 decreases. This, together with the property of 
R just mentioned, shows that if R < 0 for some Eo, then R < 0 for E <E,. 

3. Andyticd cdcdations of R 

In this section and the following one, some examples of calculations of R will be given. 
Our aim is to find out whether R is an interesting quantity in the sense that it does not 
always have the same sign. This turns out to be the case, thereby leading one to 
conjecture that R = 0 corresponds to a definite point in the series: ergodicity, mixing, 
n- mixing, etc. Systems with R > 0 are to the left of that point, systems with R < 0 to the 
right. 

Even though the Riemann scalar R is a local quantity, its calculation need not be 
simple in many-body systems where each of the bodies interacts with many others. In 
general one will have to do the calculation numerically. A second problem is the 
integration of R over the configuration manifold. As will be seen below, the main 
contribution occasionally comes from a very small part of configuration space (as 
measured in ordinary coordinates). 

In this section we shall consider two simple systems, where formal expressions for R 
can be derived. The first is the trivial example of the ideal gas. It is defined by V = 0. 
The derivatives of V obviously vanish, and (3) therefore shows that R = 0. Actually all 
components of the full Riemann tensor are zero everywhere, which is another way of 
saying that all trajectories are straight lines. 

More interesting is the potential 

It describes a system of N independent linear oscillators. This is an example of an 
integrable system. It is found that 

N(N-1y 1 
N-4  9. R = 4  

This result is compatible with the hypothesis that integrable systems have positive R 
and systems high in the ergodicity hierarchy negative R .  

It may also be noticed that R + O  as E +W.  Putting E = N E  and taking the limit 
N +CO yields R ,  = 4 / ~ * .  
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4. The Riemann invariant of some Debye-Huckel and Lennard-Jones systems 

To see what R becomes in simple models for a plasma arid a noble gas we consider 
Debye-Huckel and Lennard-Jones systems with eight or more particles. Curvature 
statistics for such systems were reported in I. There the weight function of the 
distributions was taken to be unity. Invariant distributions may be obtained by 
adopting the weight function 4. 

An Np particle Debye-Huckel (DH) system is defined by the potential 
N P  

V ( r l ,  . * > rNp) = exp(-rij)/rij> rij = Iri - rj 1. 
i , j  = 1 
i < j  

The trace of the matrix vij of the second derivatives of V is given by 

Tr vij = 2 exp(-rkl)/rkl. (7) 
k $ 1  

It is obviously strictly positive definite. Together with (3) this fact shows that R >O for 
sufficiently large E. The main problem is therefore to determine the behaviour for 
(relatively) small energies. 

The results of the calculations for systems with N p  = 8 are given in table 1, those for 
Np = 27 particles are given in table 2. The method of calculation is described in § 6 of 1. 
The present tables are based on samples of 104-105 configurations. Beside the value of 
R the tables give the ratiof, of the invariant volume of the domain where R > 0 to the 
total invariant volume. 

The results can be summarised as follows. 
(i) The qualitative behaviour of the computed quantities is the same for the 8- and 

(ii) For sufficiently small densities R > 0 for all E. (To be precise: an upper limit has 

(iii) For higher densities there is an energy Eo such that R < 0 for E <E, and R > 0 

27-particle systems. 

been set on the value of Eo.) 

for E >E,. 

Table 1. I? and f+  as a function of the density n and energy E for an 8-particle 
Debye-Huckel system. 

- 
n E R f+  

0.001 
0.001 
0.01 
0.1 
1 

1 10 
50 

100 
io3 
io4 

1 o3 
1 o4 

1000 250 

(5.6*0.2) x io4 
(3.67k0.06) x lo3 
202 i 2 
9.510.1 
0.316*0.004 

-16* 1 
-0.215*0.010 

(-0.24*0.03)~ IO-’ 
(-0.25*0.18)x 1 O - j  
(+0.35*0.04) x lo-’ 

- 1 3 2 * 8  
-1.361 k 0,011 

(-0.75 *0.20) x lo-’ 

0.975~t0.001 
0.966 * 0.002 
0.974 *0.001 
0.9824 * 0.0005 
0.9902 *0.0006 

0.04k0.02 
0.739*0.005 
0.847 * 0.004 
0.9725 * 0.0005 
0.9962 * 0.0002 

0.00 
0.00000 
(8.25*0.15)x IO-* 
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Table 2. R and f+ as a function of the density n and energy E for a 27-particle 
Debye-Huckel system. 

n E R f+ 

0.001 0.1 
1 .o 

10 

1 100 
200 
500 

io3 
1 o4 

1 o4 
io5 

1000 2500 

106 

59.2 f 1.1 
2.37f0.02 
0.0627 *0.0005 

-1.38 f 0.10 
-0.175 f0.004 

0.189f0.005 
(0.42fO.05)X lo-’ 
(0.13*0.12)X 

-21.2rt0.7 
-0.208rt 0.006 

(-1.4rtO.8)~10-’ 

0.946*0.006 
0.952f0.002 
0.975 *0.001 

0.22f0.03 
0.64 fO.01 
0.833 jz0.004 
0.9OOf 0.003 
0.981f0.001 

0.0000 
0.0000 
0.435*0.003 
0.944*0.002 

(iv) Moreover, for sufficiently large densities and sufficiently small energies the 
Riemann scalar is negative everywhere on the configuration manifold. 

Of course, the last remark is actually a hypothesis. In fact our computations showed 
that for all 250000 8-particle configurations and all 50000 27-particle configurations 
chosen at random R < 0. 

A Lennard-Jones (U) system with N p  particles is defined by the potential 

We consider 8-particle systems, N p  = 8. The results are given in table 3. 
The most remarkable result is that R > 0 for n = 0.001 and E = 0. This is remark- 

able because in I negative curvature was found for more than half of the configurations. 
Similarly, here it is found that the fraction of configurations having R > O  is only 
0.006. The table shows, however, that the invariant volume of the configurations with 
R < O  is small with respect to the invariant volume of the configurations with R > O .  
This situation is caused by the well in the LJ potential. For small energy the kinetic 
energy of a configuration is small (and of the same order of magnitude), except when 

Table 3. R and /+ as a function of the density n and energy E for an 8-particle 
Lennard-Jones system. 

n E R f+ 

0.001 0 (1.9fO.3)X lo3 0.85 i.0.05 
0.1 (1.34+0.19)X lo3 0.81.0.1 
1 34f 1 0.1 15 f 0.002 

i/J2 0 (0.71 3~0.03) X lo3 0.968 rt 0.004 
lo2 5.28rt0.08 0.982f0.001 
io4 (3.38*0.06) x lo-’ 0.992 f 0.001 
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there is a close pair of particles. Since T appears in (3) with the exponent iN - 3 these 
last configurations carry great weight. 

Furthermore, the well gives rise to relatively large derivatives vi and vij. The 
absolute values of Trvij and Trvivj are larger by orders of magnitude for configurations 
witb at least one close pair as compared with other configurations. Moreover, it turns 
out that they are characterised by 

2(E - V) Tr vij - f ( N  - 6) Tr vivj > 0, 

i.e. by R > O .  The main contribution to the integrals in (3) therefore comes from these 
configurations. In particular the numerator is positive. Still, the positive values in the 
sum approximating the numerator have a large spread, and it is difficult to obtain a 
reliable value for R.  The relative accuracy of 16 % for n = 0.001 andE = 0 (see table 3) 
was obtained by taking a sample of 5 x lo6 configurations. 

The minimum of l / r  l2  - l / r 6  is -a. Therefore, the weights of configurations with 
and without close pairs are of the same order of magnitude if E 3 O(1).  In table 3 this 
shows up in the reduction of f+  from 0.8 at E = 0.1 to 0.1 at E = 1. The Riemann 
invariant is seen to remain positive during this transition. 

At liquid densities virtually all configurations contain close pairs. The statistics are 
much better, so that the accuracy of the results for n = 1/& in table 3 could already be 
obtained by taking samples of lo4 configurations. 

5. Conclusion 

If the above results and those of I are taken together the following picture emerges. 
In DH systems configurations with negative curvature are extremely rare, if they 

exist at all. Nonetheless, the evidence suggests that in part of the n, E-plane R < 0 
everywhere on the manifold E - V ( q )  > 0.  Obviously, a larger part of the n, E-plane 
has the weaker property R < 0. 

The LJ systems are very different. For n andE sufficiently small, negative curvature 
is found in a domain of the configuration manifold that has a relatively small invariant 
volume. The occurrence of negative curvature seems to have little effect on the overall 
curvature properties however: no case of R < O  was encountered in our survey, and 
R > 0 for all n, E in table 3. 

= 0 for the ideal gas, and that for the integrable 
many-oscillator system R > O .  Thus it has been shown that the selected model systems 
display a wide variety of curvature properties. This leaves one the more curious as to 
the precise implications of these properties in terms of integrability and ergodic 
properties. 

Finally, it may be worth noticing that the Riemann tensor depends continuously on 
the potential. If, therefore, R > 0 or < 0 for a specific potential, the same inequality 
will in general hold for all potentials in a neighbourhood of the given one. 

In 0 3 we had already seen that 
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